УДК 546+548.734+669.017.1

Л. Зінько, Г. Ничипорук, Р. Гладишевський

СИСТЕМА Hf-Re-Si ПРИ 1000°С

Львівський національний університет імені Івана Франка, м. Львів, Україна

Методами рентгенівської порошкової дифракції, скануючої електронної мікроскопії і енергодисперсійної рентгенівської спектроскопії досліджено взаємодію компонентів у потрійній системі Hf–Re–Si у повному концентраційному інтервалі та побудовано ізотермічний переріз діаграми стану при 1000°С. Визначено, що розчинність Si у бінарних сполуках Hf₅Re₂₄ і HfRe₂ становить 11 і 16 ат.%, відповідно. Підтверджено існування і визначено параметри кристалічної структури тернарних сполук HfReSi₂ (структурний тип ZrCrSi₂; просторова група *Pbam*; *a*=9,1271(3) Å; b=10,0356(4) Å; c=8,0708(3) Å), HfReSi (структурний тип ZrNiAl; просторова група P-62m; a=6,9240(2) Å; c=3,3890(1) Å) і к-фази Hf_{9+x}Re_{4-x}Si (структурний тип Hf₉Mo₄B; просторова група *P*6₃/*mmc*; a=8,5835(12) Å; c=8,7135(13) Å). Виконано порівняльний аналіз взаємодії компонентів у системі Hf–Re–Si та споріднених системах.

Ключові слова: гафній, реній, силіцій, рентгенівська дифракція, фазова рівновага, тернарна сполука, кристалічна структура.

DOI: 10.32434/0321-4095-2023-148-3-72-76

Bcmyn

Потрійні системи за участю двох d- і одного p-елементів досліджують досить давно. Проте, багато з них залишаються дотепер мало вивченими. Так, із систем {Ti, Zr, Hf]–{Mn, Re}– {C, Si, Ge, Sn, Pb} найкраще вивчені системи з титаном. Ізотермічні перерізи діаграм стану у повному концентраційному інтервалі побудовано для частини систем з манганом Ti–Mn–Si, Ti–Mn–Ge, Ti–Mn–Sn, Zr–Mn–Sn, а також для двох систем з ренієм Zr–Re–C і Hf–Re–C [1– 3]. Більшість систем досліджували лише на предмет утворення сполук окремих складів, ізоструктурних до відомих типів [4].

Мета нашої праці — побудова ізотермічного перерізу діаграми стану потрійної системи Hf— Re—Si при температурі 1000°С.

Для подвійних систем Hf-Re, Hf-Si i Re-Si, які обмежують досліджувану потрійну, побудовано діаграми стану та визначено кристалічні структури сполук [1].

Матеріали та методика експерименту

Зразки для дослідження масою ~1 г синтезували методом електродугового плавлення шихти металів (з чистотою Hf ≥99.9 мас.%, Re≥99.9 мас.%, Si≥99.999 мас.%). Реній використовували у вигляді порошку, який перед сплавлянням пресували у таблетки. З метою забезпечення гомогенізації сплави переплавляли повторно. Втрати під час плавлення не перевищували 1 мас.%, тому склад сплавів приймали таким, що дорівнює складу шихти. Одержані зразки відпалювали у вакуумованих кварцових ампулах за температури 1000°С впродовж тижня, а тоді загартовували. Зразки, як литі, так і відпалені, стійкі до дії атмосферного середовища впродовж тривалого часу.

Масиви дифракційних даних отримали з використанням порошкових дифрактометрів ДРОН-2.0М (Fe K_α-випромінювання) і Stoe Stadi P (Cu K_{α1}-випромінювання). Дослідження мікроструктур поверхонь сплавів провели на скануючому електронному мікроскопі TescanVega 3 LMU, оснащеному детектором Oxford Instruments SDD X-MaxN20. Фазовий аналіз та структурні розрахунки виконали з використанням програм STOE WinXPOW і FullProf.

Результати досліджень та їх обговорення

За результатами рентгенівського фазового та локального рентгеноспектрального аналізів 39

© Л. Зінько, Г. Ничипорук, Р. Гладишевський, 2023

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

L. Zinko, G. Nychyporuk, R. Gladyshevskii

Θ

подвійних і потрійних зразків побудовано ізотермічний переріз діаграми стану системи Hf– Re–Si у повному концентраційному інтервалі за температури 1000°C (рис. 1). Нами підтверджено існування 11 бінарних сполук: Hf₅Re₂₄ (структурний тип (CT) Ti₅Re₂₄), HfRe₂ (CT MgZn₂), Hf₂₁Re₂₅ (CT Zr₂₁Re₂₅), HfSi₂ (CT ZrSi₂), HfSi (CT FeB), Hf₅Si₄ (CT Zr₅Si₄), Hf₅Si₃ (CT Mn₅Si₃), Hf₂Si (CT CuAl₂), Re₄Si₇ (CT Re₄Si₇), ReSi (CT FeSi) і Re₂Si (CT Re₂Si). Ізотермічний переріз діаграми стану системи Hf–Re–Si налічує 17 однофазових, 34 двофазових і 18 трифазових ділянок. Найбільше рівноваг має сполука Re₄Si₇. Бінарні сполуки, окрім Hf₅Re₂₄ і HfRe₂, помітних кілько-

Рис. 1. Ізотермічний переріз діаграми стану системи Hf-Re-Si при 1000°C: 1 – HfReSi₂, 2 – HfReSi, 3 – Hf_{9+x}Re_{4-x}Si

стей третього компонента не розчиняють. До 11 ат.% Si розчиняється у сполуці Hf_5Re_{24} (a=9,5135(8) Å) і до 16 ат.% Si – у $HfRe_2$ (a=5,1899(1) Å; c=8,5009(3) Å) [5]. За температури дослідження в системі Hf-Re-Si підтверджено існування та уточнено кристалічну структуру тернарних сполук: HfReSi (CT ZrNiAl) [6], $HfReSi_2$ (CT ZrCrSi₂) [7] і κ -фази $Hf_{9+x}Re_{4-x}Si$ (CT Hf_9Mo_4B) [8].

Для зразка складу Hf₂₉Re₃₁Si₄₀ на основі масивів експериментальних відбиттів hkl з використанням програмного пакета FullProf проведено уточнення кристалічної структури фаз (рис. 2): HfReSi (CT ZrNiAl [6], ПГ Р-62m, a=6,9240(2) Å; c=3,3890(1) Å; V=140,71(1) Å³; B_{overall}=0,72(3) Å²; R_{Bragg}=0,053; R_F=0,039; вміст 64 мас. %); HfReSi₂ (СТ ZrCrSi₂ [7], ПГ Pbam, a=9,1271(3) Å; b=10,0356(4) Å; c=8,0708(3) Å; V=739,25(5) Å³; $B_{overall}$ =1,19(5) Å²; R_{Bragg} =0,164; $R_{F}=0,119$; вміст 34 мас.%) і $Hf_{4}Si_{7}$ (СТ $Re_{4}Si_{7},\Pi\Gamma$ Cm, a=23,260(6) Å; b=3,1377(7) Å; c=8,2810(16) E; $\beta = 92,711(16)^{\circ}$; V=603,7(2) Å³; R_{Bragg}=0,144; R_F=0,133; вміст 2 мас.% – параметри атомів не уточнювали). Координати атомів у структурах сполук HfReSi i HfReSi₂ подано в табл. 1.

Уточнення кристалічної структури фаз проведено також для зразка складу $Hf_{75}Re_{18}Si_7$ (рис. 3): $Hf_{9+x}Re_{4-x}Si$ (СТ Hf_9Mo_4B [8], ПГ $P6_3/mmc$, a=8,5835(12) Å; c=8,7135(13) Å; V=555,97(18) Å³; $B_{overall}$ =0,22(3) Å²; R_{Bragg} =0,060; R_F =0,037; вміст 71 мас.%) та Hf (СТ Mg, ПГ $P6_3/mmc$; a=3,1952(5) Å; c=5,0638(8) Å; V=44,77(1) Å³; R_{Bragg} =0,049; R_F =0,033; вміст

Рис. 2. Дифрактограма (а) (дифрактометр Stoe Stadi P, Cu $K_{\alpha 1}$ -випромінювання) і фотографія мікрошліфа (б) (електронний мікроскоп Tescan Vega 3 LMU) зразка складу $Hf_{29}Re_{31}Si_{40}$ (світла фаза – HfReSi; сіра фаза – $HfReSi_2$; темна фаза – Re_4Si_7)

The system Hf-Re-Si at 1000°C

Таблиця 1 Координати атомів у структурах сполук HfReSi (ПГ P-62m) і HfReSi₂ (ПГ Pbam)

Атом	ПСТ	Х	у	Z		
HfReSi						
Hf	3f	0,5965(3)	0	0		
Re	3g	0,2557(2)	0	0		
Si1	2d	1/3	2/3	1/2		
Si2	1a	0	0	0		
HfReSi ₂						
Hf1	8i	0,3274(6)	0,0458(5)	0,2477(9)		
Hf2	4g	0,3349(12)	0,3166(8)	0		
Re1	8i	0,0880(5)	0,2601(5)	0,2462(9)		
Re2	4e	0	0	0,2424(14)		
Si1	8i	0,327(4)	0,326(3)	0,363(3)		
Si2	4h	0,058(7)	0,375(5)	1/2		
Si3	4h	0,147(7)	0,105(5)	1/2		
Si4	4g	0,019(7)	0,375(5)	0		
Si5	4h	0,111(7)	0,115(5)	0		

27 мас.%). Вміст фази Hf_2Si (CT Cu_2Al , $\Pi\Gamma$ I4/mcm; a=6,8403(12) Å; c=4,6472(11) Å) становив 2 мас.%, і структурні уточнення для неї не проводили. Координати атомів у структурі сполуки к-фази $Hf_{9+x}Re_{4-x}Si$ подано в табл. 2.

Усі тернарні сполуки цієї системи (рис. 4) належать до структур з триногально-призматичною координацією атомів найменшого розміру (клас 10) згідно з класифікацією П.І. Крип'якевича. Зокрема, у структурі сполуки HfReSi₂ можна виділити призми, у вершинах яких знаходяться атоми Hf i Re (міжатомні віддалі δ (Hf–

Габлиця 2	2
-----------	---

Координати атомів у структурі к-фази Hf_{9+x}Re_{4-x}Si (x=1,26) (ПГ Р6₃/mmc)

Атом	ПСТ	Х	у	Z		
Hf1	12k	0,19892(3)	0,39786(3)	0,04805(2)		
Hf2	6h	0,53753(6)	0,07502(13)	1/4		
M1*	6h	0,88991(4)	0,77986(9)	1/4		
Re2	2a	0	0	0		
Si	2c	1/3	2/3	1/2		
*M1=0,58(1)Re+0,42(1)Hf						

Si)=2,685 Å; δ (Re–Si)=2,684 Å). У структурі сполуки HfReSi є два типи призм: одні утворені атомами Hf, інші – атомами Re (міжатомні віддалі δ (Hf–Si)=2,704 Å; δ (Re–Si)=2,451 Å). Атоми Hf утворюють тригональні призми у структурі к-фази Hf_{9+x}Re_{4-x}Si (міжатомні віддалі δ (Hf–Si)=2,662 Å). Варто зазначити, що віддалі від центрального атома до вершин у цих призмах є близькими до суми атомних радіусів відповідних елементів (r_{Hf}=1,564 Å; r_{Re}=1,370 Å; r_{Si}=1,17 Å).

Якщо порівняти досліджену систему з подібними потрійними системами за участю d-металу IV групи (Ti, Zr, Hf) з Mn або Re і p-елементом IV групи (C, Si, Ge, Sn, Pb), то можна зауважити, що сполуки у них існують на ділянках з невисоким (не більше 33,3 ат.%) Mn або Re. Закономірно найбільша подібність є між системами з Si та Ge, яка виявляється в існуванні сполук зі структурами типів ZrNiAl і ZrCrSi₂ [4].

Рис. 3. Дифрактограма (a) (дифрактометр Stoe Stadi P, Cu $K_{\alpha l}$ -випромінювання) і фотографія мікрошліфа (б) (електронний мікроскоп Tescan Vega 3 LMU) зразка складу $H_{f_{25}}Re_{18}Si_7$ (сіра фаза – $Hf_{9+x}Re_{4-x}Si$; темна фаза – Hf)

L. Zinko, G. Nychyporuk, R. Gladyshevskii

Рис. 4. Тригональні призми з атомів Hf i Re у структурах сполук: HfReSi₂ (a), HfReSi (б), κ -фази Hf_{9+x}Re_{4-x}Si (в)

Подяка

Автори вдячні провідному науковому співробітнику П.Ю. Демченку (Міжфакультетська науково-навчальна лабораторія рентгеноструктурного аналізу ЛНУ ім. Івана Франка) за допомогу в отриманні експериментальних масивів дифрактограм окремих сплавів та науковому співробітнику В.М. Кордану (Центр колективного користування науковим обладнанням "Лабораторія матеріалознавства інтерметалічних сполук") за допомогу у дослідженні мікроструктур зразків.

СПИСОК ЛІТЕРАТУРИ

1. Villars P., Okamoto H., Cenzual K. ASM alloy phase diagram database, release 2006/2022 – Materials Park: ASM International, 2022.

2. *Phase* equilibria in the Ge–Mn–Ti ternary system at 973 K, 1073 K and 1173 K / Sun Y., Zeng W.J., Hu K., Liu H.S., Cai G.M., Jin Z.P. // Calphad. – 2017. – Vol.56. – P.139-149.

3. *Peculiarity* of component interaction in Zr–Mn–{Sn, Sb} ternary systems / Romaka L., Tkachuk A., Stadnyk Y., Romaka V.V., Horyn A., Korzh R. // J. Alloys Compd. – 2014. – Vol.611. – P.401-409.

4. *Villars P., Cenzual K.* Pearson's crystal data, crystal structure database for inorganic compounds, release 2018/19 – Materials Park: ASM International, 2018.

5. Interaction of the components in the system Hf-Re-Si / Zinko L., Matselko O., Kordan V., Nychyporuk G., Gladyshevskii R. // Chem. Met. Alloys. – 2019. – Vol.12. – P.88-92.

6. *Yarmolyuk Y.P., Gladyshevskii E.I.* New ternary compounds of equiatomic composition in the systems of two transition metals and silicon or germanium // Dopov. Akad. Nauk Ukr. RSR, Ser. B. – 1974. – P.1030-1032. (*in Ukrainian*).

7. *The crystal* structure of $ZrCrSi_2$ / Yarmolyuk Y.P., Sikiritsa M., Akselrud L.G., Lysenko L.A., Gladyshevskii E.I. // Sov. Phys. Crystallogr. – 1982. – Vol.27. – P.652-653.

8. Harsta A., Wennebo E. New κ -phase in the system Hf–W–{S, As, Se} and Hf–Re–{Si, P, S, Ge, As, Fe, Co, Ni} // Acta Chem. Scand. – 1982. – Vol.36A. – P.547-548.

Надійшла до редакції 23.02.2023

THE SYSTEM Hf-Re-Si AT 1000°C L. Zinko *, G. Nychyporuk, R. Gladyshevskii Ivan Franko National University of Lviv, Lviv, Ukraine

* e-mail: lianazinko@gmail.com

The interaction of the components in the ternary system Hf–Re–Si was investigated by X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The isothermal section of the phase diagram at 1000°C was constructed in the full concentration range. The limits of solubility of Si in the binary compounds Hf_5Re_{24} and $HfRe_2$ were found to be 11 and 16 at.%, respectively. The existence of three ternary compounds was confirmed and their crystal structures were refined: HfReSi₂ (ZrCrSi₂-type structure, space group Pbam, a=9.1271(3) Å, b=10.0356(4) Å, c=8.0708(3) Å), HfReSi (ZrNiAl-type structure, space group P-62m, a=6.9240(2) Å, c=3.3890(1) Å) and κ -phase $Hf_{9+x}Re_{4-x}Si$ (Hf₉Mo₄B-type structure, space group P6₃/mmc, a=8.5835(12) Å, c=8.7135(13) Å). The character of the interaction between the components in the Hf–Re–Si system and related ternary systems is briefly discussed.

Keywords: hafnium; rhenium; silicon; X-ray diffraction; phase equilibrium; ternary compound; crystal structure.

REFERENCES

1. Villars P, Okamoto H, Cenzual K. *ASM alloy phase diagram database*, release 2006/2022. Materials Park: ASM International; 2022.

2. Sun Y, Zeng WJ, Hu K, Liu HS, Cai GM, Jin ZP. Phase equilibria in the Ge-Mn-Ti ternary system at 973 K, 1073 K and 1173 K. *Calphad.* 2017; 56: 139-149. doi: 10.1016/j.calphad.2016.12.005.

3. Romaka L, Tkachuk A, Stadnyk Yu, Romaka VV, Horyn A, Korzh R. Peculiarity of component interaction in Zr–Mn–{Sn, Sb} ternary systems. *J Alloys Compd.* 2014; 611: 401-409. doi: 10.1016/j.jallcom.2014.05.078.

4. Villars P, Cenzual K. *Pearson's crystal data, crystal structure database for inorganic compounds*, release 2018/19. Materials Park: ASM International; 2018.

5. Zinko L, Matselko O, Kordan V, Nychyporuk G, Gladyshevskii R. Interaction of the components in the system Hf-Re-Si. *Chem Met Alloys.* 2019; 12: 88-92. doi: 10.30970/cma12.0398.

6. Yarmolyuk YP, Gladyshevskii EI. New ternary compounds of equiatomic composition in the systems of two transition metals and silicon or germanium. *Dopov Akad Nauk Ukr RSR Ser B.* 1974; 1030-1032. (*in Ukrainian*).

7. Yarmolyuk YP, Sikiritsa M, Akselrud LG, Lysenko LA, Gladyshevskii EI. The crystal structure of ZrCrSi₂. *Kristallografiya*. 1982; (27): 1090-1093. (*in Russian*).

8. Harsta A, Wennebo E. New kappa-phases in the system Hf-W-{S, As, Se} and Hf-Re-{Si, P, S, Ge, As, Fe, Co, Ni}. *Acta Chem Scand.* 1982; 36A: 547-548. doi: 10.3891/acta.chem.scand.36a-0547.